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Sanjay Purit'? Alan J. Bray! and Joel L. Lebowit2
!Department of Theoretical Physics, The University, Manchester M13 9PL, United Kingdom
2lsaac Newton Institute of Mathematical Sciences, Cambridge University, Cambridge CB3 OEH, United Kingdom
3School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
4Departments of Mathematics and Physics, Rutgers University, Piscataway, New Jersey 08903
(Received 7 May 1996

We present extensive results from two-dimensional simulations of phase-separation kinetics in a model with
order-parameter dependent mobility. We find that the time-dependent structure factor exhibits dynamical
scaling and the scaling function is numerically indistinguishable from that for the Cahn-H{lGatdequation,
even in the limit where surface diffusion is the mechanism for domain growth. This supports the view that the
scaling form of the structure factor is “universal” and leads us to question the conventional wisdom that an
accurate representation of the scaled structure factor for the CH equation can only be obtained from a theory
which correctly models bulk diffusiodS1063-651X%97)09107-1

PACS numbds): 64.70—p

I. INTRODUCTION limiting case where one of the components is present in a
small fraction[1]. An outstanding theoretical problem in this

When a two-phase mixture in a homogeneous phase ield is the calculation of the scaled structure factor for the
quenched below the critical coexistence temperature, it besonserved case when the two components of the mixture are
comes thermodynamically unstable and evolves towards gresent in an equal proportion, viz., the so-called critical
new equilibrium state, consisting of regions which are rich inquench 8]. Our results in this paper provide some interesting
one or the other constituent of the mixture. The dynamics ofnsights on this problem, as we will discuss later.
this evolution is referred to as “phase-ordering dynamics”  In this paper, we study a model for phase-separation dy-
and constitutes a well-studied problem in nonequilibrium stanamics in systems where the mobility is order-parameter de-
tistical mechanicd1]. As a result of these investigations, pendent. We will present detailed numerical results from a
there is now a good understanding of many aspects of phasémulation of this model. This paper is organized as follows.
ordering in pure and isotropic binary mixtures. Thus, it isln Sec. Il, we briefly discuss our model and its static solu-
generally accepted that the coarsening domains are chardigen. In Sec. lll, we present numerical results obtained from
terized by a unique, time-dependent length st#l}, where  our model. Section IV ends this paper with a summary and
t is time. Furthermore, the nature of the phase ordering prodiscussion.
cess depends critically on whether or not the order parameter
is conserved. For systems characterized by a nonconserved |I. MODEL FOR PHASE-SEPARATING SYSTEMS
order parameter, e.g., ordering of a ferromagnet, growing WITH ORDER-PARAMETER-DEPENDENT MOBILITY
domains obey the Lifshitz-Cahn-Alle(LCA) growth law i o i
L(t)~tY2[1]. For systems with a conserved order parameter The dynamics of phase separaﬂon is usually described by
but no hydrodynamic effects, e.g., segregation of a binary'® Phenomenological equation
alloy, the characteristic domain size obeys the Lifshitz- - -
Slyozov (LS) growth lawL (t)~t*3[1]. For systems with a I$(r,t) _¥. SHLo(r,1)]
conserved order parameter and hydrodynamic effects, e.g., at 5¢>(F,t)
segregation of a binary liquid, there appear to be various
regimes of domain growth, depending on the dimensionalityvhere(r ,t) is the order parameter at poinind timet and
and system parametelr,3]. is a measure of the local difference in densities of the two

As far as the analytic situation is concerned, there is &egregating species, sdyandB. In Eq. (1), M(¢) corre-
reasonable understanding of the nonconserved case for pusponds to the mobility, which is dependent on the order pa-
and isotropic systems. In particular, the LCA diffusive rameter, in general. The free-energy functional is usually
growth law has been derived in some exact mofiélsIn  chosen to be of the standagf form, viz.,
addition, Ohteet al.and Oono and PufE] have proposed an
analytic form for the time-dependent structure factor which - 4 1 - 1 -,
is in good agreement with numerical results, though the qual- H[¢(r't)]:j dr| - E‘f’(r*t) +Z¢(r’t)
ity of this agreement has recently been questioned by Blun-
dell et al. [6]. For the conserved case, the situation is less 1. -
satisfactory. There is some understanding of the growth ex- + §[V¢(r’t)]
ponents and one has a good empirical form for the scaled
structure factor, at least without hydrodynam[@§. How-  where we assume that all variables have been rescaled into
ever, this functional form is analytically derivable only in the dimensionless units, and the system is below the critical tem-
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perature. The dynamics of Eqd) and(2) drives the order wasaki spin-exchange kineti¢47]. This equation was first
parameter to the local fixed point values,= =1, corre- obtained in the context of phase separation in a gravitational
sponding to(say A- and B-rich phases, respectively. The field but does not reduce to the CH equation in the absence
temporal evolution described by E¢l) also satisfies the of gravity. As a matter of fact, it takes a form similar to that

conservation constraint thgtré(r,t) be constant in time.  of EQ. (1), i.e.,
There have been many studies of Ef). in the limiting .
case of the Cahn-HilliardCH) equation[9], where the mo- ap(r,t)

bility is constant, viz.,M(#)=1 (in dimensionless uni}s at

Numerical studies of the CH equation and equivalent cell

dynamical systeniCDS) models[10] demonstrate that late- with the free energy

stage domain growth obeys the LS growth law we have

quoted earliefi.e., L(t)~t*3]. These studies also clarify the R T .1

functional form of the scaled structure factor which charac- Hl¢(r.0]= T TJ dri

terizes the morphology of the coarsening domains. T
For deep quenches, it has been pointed out by Langer - - c, >

et al. and Kitahara and Imadfll] that a more realistic +[1—¢(r,t)]|n[1—¢(r,t)]—?cﬁ(r,t)z

model for phase separation should explicitly incorporate an

order-parameter-dependent mobility of the form

-

|[1-g(r, 02V

SH[ &(r,
(T t)]” @
od(r,t)

[1+o(r,0)]IN[1+ ()]

Te—T . .
+ 7 [Vo(r,H]?|. 5)

M(¢p)=1-ag?, ()

Equationg4) and(5) have been cast in a dimensionless form
wherea parametrizes the depth of the quench. At the physiby a rescaling of the space and time variables analogous to
cal level, this form of the mobility can be understood asthat for the CH equatiofl7]. (Clearly, this rescaling is not
follows. Deep quenches result in enhanced segregation idppropriate in the vicinity of the critical temperaturg.) It
that A-rich (or B-rich) domains are purer iA (or B) than in is difficult to put Egs.(4) and (5) in a parameter-free form
the case of shallow quenches. Thus, if one presumes th@ecause of the additional term in comparison to the CH
phase separation occurs by exchanges of neighbériagd  €quation and the nature of the static solution, which we dis-
B atoms, the probability of such an exchange in the bulk iscuss below. The first two terms under the integral sign in Eq.
drastically reduced for deep quenches. This can be mimicked) are recognized as the entropy of a noninteracting binary
by the order-parameter-dependent mobility in E8). with mixture and the next two terms correspond to the interaction
a—1. At the mathematical level, Kitahara and Imgda]  part[18].
have shown that an order-parameter-dependent mobility Equations(4) and(5) have the pleasant feature that they
arises naturally if one attempts to obtain a coarse-grainedxplicitly contain the mean-field static solutie#f(r), which
model for phase separation from a master equation descrifs the solution of
tion of an appropriate microscopic model, viz., the Ising
model with Kawasaki spin-exchange kinet[d<]. o Te o -

The physical effect of the order-parameter-dependent mo- ¢(r)=tan T¢ N+
bility is that, as a—1 (which happens for temperature
T—0), bulk diffusion is substantially suppressed because thevhere it should be kept in mind that the space variable has
mobility M (¢,)— 0. Therefore, the effects of surface diffu- been rescaled. However, we do not expect our model to be in
sion are relatively enhanced. The surface-diffusion mechaa different dynamical universality class from E¢b—(3). In
nism for domain growth has an associated growth lawour model, ad’— 0, the saturation value of the order param-
L(t)~t* [13], in contrast to the evaporation-condensationeter ¢,— = 1. This reduces the bulk diffusion because of the
mechanism which drives asymptotic growth in the CH equa©order-parameter-dependent mobility and enhances the time
tion and gives rise to the LS growth law. Therefore, asregime in which one observes surface-diffusion-mediated
T—0, one expects an extended regimetf growth in the ~ growth. In the case where surface diffusion is predominant,
dynamics of Eqs(1)—(3). This model has been studied nu- we follow the terminology established by Hohenberg and
merically by various author§l4] and we will remark on Halperin[19] and refer to our model as “model S,” where S
their results shortly. Furthermore, Bray and Emmdts]  refers to surface diffusion. In the classification of Hohenberg
have analytically studied phase-separation in models witland Halperin, the CH equation is referred to as model B. For
order-parameter-dependent mobility in the limit where oneshallow quenches, the saturation value of the order parameter
of the components is present in a vanishingly small fractiongy is considerably less than 1 and the mobility
In passing, we should also point out that an order-parameteM (#)(=1— ¢?) is not significantly reduced in the bulk. In
dependent mobility as in Eq3) has proved to be a useful this limit, the dynamics of our model is in the same dynami-
way of incorporating the effects of external fields which vary cal universality class as model B or the CH equation.
linearly with distance, e.g., gravity. However, we will not go  In this paper, we present detailed numerical results from a
into this here and merely refer the interested reader to Rekimulation of Eqs(4) and (5). The purpose of this paper is
[16]. twofold. First, our numerical results improve substantially

In recent work, there was proposed a novel dynamicalipon existent resultgl4] for models with order-parameter-
equation for phase separation in binary mixtures—using thelependent mobility. Second, we believe that our results may
master equation formulation for an Ising model with Ka- be of some relevance to an outstanding theoretical problem

)
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e T/T.=0.2, 0.4, 0.5, and 0.8, corresponding ¢g=0.9999,
S 0.9857, 0.9575, and 0.7105, respectively. We implement a
i simple Euler discretization of Eq&4) and(5) on a lattice of
sizeNXN. The Laplacian and divergence operators in Egs.
(4) and (5) are replaced by their isotropically discretized

(a)

/0,

o4t 1 | ] equivalents, involving both nearest- and next-nearest neigh-
/4.5*" Tt bors. The discrete implementation of our model with order-

02| g e 1o 1 parameter-dependent mobility has the unpleasant feature that

oo . . ' . it is unstable for¢>1 and numerical fluctuations which

"o 1 ] 2 3 o0 1 " 2 cause¢ to become larger than 1 give rise to unphysical

divergences(This property is common to all such models
[14].) For T/T.=0.2(¢(=0.9999), this causes a numerical

FIG. 1. (8 Static wall solutions of the model described in the problem because of the proximity of the saturation value to
text [Eqgs. (4) and (5)]. The solutions are obtained by numerically + 1. We circumvent this problem by using a very fine mesh
solving Eq.(8). We plot the profile¢*(x)/ ¢o vs x for x>0 (where  sjze (At=0.001 andAx=0.5) and by setting the value of
¢, is the saturation valydor four values of the tempera.ltuﬂ'e vi;., ¢ equal to gy (or — ) whenever it exceeds, (or be-
T/T.=0.2,0.4, 0.5, and 0.8b) Same asa) except the distanceis  comes |ess tham ¢,). We have confirmed that this proce-
scaled py a correlation .Iength which is Qeflned.as the distance dure does not cause any appreciable violation of order-
over which the wall profile rises to 42 of its maximum value. parameter conservation for the extremely fine mesh we have
used. For the higher values of studied here, we use the
Goarser mesh sizest=0.01 andAx=1.0 and this suffices
for our purposes.

Periodic boundary conditions are applied in both direc-
we need the solution of the one-dimensional version of Ezqti(?r.ls of ou_r_lattice. For all simulations descriped here, the
(6), viz initial condl'gon for the order parameter consists of a uni-

P formly distributed random fluctuation of amplitude 0.025

d243(x) T, T about a zero background. This mimics a critical quench from
=— T-T @5(x)+ TC_Ttanh*l[¢5(x)]. (7)  high temperatures, at which the system is homogeneous but

of phase-separation dynamics, viz., the computation of th
scaling form of the time-dependent structure factor.

Before we present numerical results, we would like to
briefly discuss the interfacial profile in our model. For this

dx* has small thermal fluctuations.
Multiplying both sides by Pd¢S(x)/dx], we can trivially Apart from ev_olution pictures _and pr_ofiles, the statistical
integrate this equation to get quantity of experimental interest is the time-dependent struc-
ture factor
d¢S(X) — S h—l S i i _
dx | T-T R e ] Sk, =(B(K. D) bk H)*), (9)
I T In( 1- ¢S(X)2) which is the Fourier transform at wave vectoof the order
Te—T 1- ¢ parameter correlation function. In E@), ¢(k,t) is the Fou-
T, 12 rier trar_lsform of(r,t) and the a_ngylar bra<_:l_<ets refer to an
- TC_T[¢S(X)2+ q’%] , (8) averaging over an ensemble of initial conditions. In our dis-

crete simulations, the wave vectotakes the discrete values

where we focus on the profile which goes fromg, at  (27/NAX)(ny,ny), wheren, and n, range from—N/2 to
x=—o t0 ¢, atx=c0. A second integration is only possible (N/2)—1. We present here structure factor data obtained on
numerically and we show the resultant profiles %0¢0 in 512x 512 systems as an average over 60 independent initial
Fig. 1(a) for four different values off/T.. This solution has conditions. The order parameter profiles are hardened before
the form ¢S(x) = dof (x/€), wheref(y) is a sigmoidal func- computing the structure factor; viz., the valuesdf0 are

tion and¢ measures the correlation length or interface thick-S€t qual o1l ar.wb<0 are set equal te-1. The structure
ness in dimensionless units. An estimatesds obtained as factor is normalized as;S(k,t)/N*=1. All results pre-

the distance over which(x/¢) rises from 0 ta(say 1/y/2 of ~ sented below are for the spherically averaged structure factor
its maximum value. The profiles as a function of the scaledS(k;t).

distancex/¢ are shown in Fig. (b). They do not exhibit a Experimentalists are typically interested in whether or not
universal collapse because of a weak dependenégydpfon  the structure factor exhibits dynamical scalifg], viz.,

the parameteT/T,. In any case, our interest in the correla- Whether or not the time dependence of the spherically aver-
tion length is primarily from a numerical standpoint in that aged structure factor has the simple scaling form

the discretization mesh size in space should not exceed the g

interface thickness, which is approximately.2 S(k,t)=L(t)“F(KL(1)), (10)

Il NUMERICAL RESULTS yvhere d is the dlmens_lonahty 'andF(x) is a t|me-.

independent master function. The interpretation of dynamical

We have conducted extensive two-dimensional numericascaling is that the coarsening pattern maintains its morphol-
simulations of Eqgs.4) and (5) for the parameter values ogy but the characteristic length scdlét) increases with
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Time = 1000 Time = 2000 Time = 1000 Time = 2000

Time = 4000 Time = 10000

FIG. 2. Evolution pictures from a disordered initial condition for ~ FIG. 3. Similar to Fig. 2 but for the parameter value
an Euler-discretized version of Eq&) and (5) on a 256<256 T/T,=0.5.
lattice. Regions with positive order parameter are marked in black

and those with negative order parameter are not marked. The pa-h h di uti . f
rameter value ig/T.=0.2, corresponding to a situation in which shows the corresponding evolution pictures from a

surface diffusion is the primary mechanism of domain growth, The226X 256 lattice forT/T.=0.5 (or ¢=0.9575). These pic-

discretization mesh sizes amkt=0.001 andAx=0.5. Periodic tures are more reminiscent of the CH morphology. Figure 4
boundary conditions are applied in both directions. The initial con-Shows the variation of order parameter along a horizontal
dition consists of uniformly distributed random fluctuations of am- Cross section at the middle of the lattice for the evolution
plitude 0.025 about a zero background, corresponding to a criticapictures of Fig. 2. Figure 5 shows the order-parameter pro-
quench. The evolution pictures are shown for dimensionless timefiles corresponding to the evolution depicted in Fig. 3. These

1000, 2000, 4000, and 10000. profiles provide a qualitative measure of the thinning out of
defects(viz., interface$ as the coarsening proceeds.
time. There are many equivalent definitioqg to prefac- In Fig. 6(@), we superpose data from different times for

tors) of the characteristic length scale. We use what is perthe scaled structure fact@(k,t)(k)? vs k/(k). The param-
haps the most commonly used definition, viz., the inverse oéter value iST/T.=0.2, corresponding to growth mediated
the first moment of the spherically averaged structure factoby surface diffusior(i.e., model $. The structure factor data
S(k,t). Thus, we have (t)=(k) ™%, where collapses neatly onto a master curve, exhibiting the validity
of dynamical scaling in this system. The solid line refers to
SEmdkk Sk, t)

<k W (ll)

Time = 1000 Time = 2000
1.2 T T T

In Eq. (11), we take the upper cuto¥,, as half the magni-
tude of the largest wave vector in the Brillouin zone. At
these large values of the wave vector, the structure factor he
decayed to approximately zero and the valuglof is un-
changed even if we increase the cutoff. Of course, one coul
also define a length scale using higher moments of the strus
ture factor or zeros of the correlation function. However, in
the dynamical scaling regim20], these definitions are all 12
equivalent.
Figure 2 shows evolution pictures from a disordered ini-

tial condition for the parameter valud/T.=0.2 (or

0=0.9999) and a lattice size 28&56. This low value of
temperature corresponds to a situation in which there is al
most no bulk diffusion once the order parameter saturates ol
to its equilibrium values. In this case, domain growth occurs 1.2 o ; = -
via surface diffusion and has an associated growth lav X X
L(t)~tY*[13]. Notice that the domain morphology in this
case is considerably different from the morphology in the FIG. 4. Order-parameter profiles for the evolution depicted in
usual CH case with the bicontinuous domains being moreig. 2. The profiles are measured along a horizontal cross section at
serpentine and intertwined in the present case. Figure fhe center of the vertical axis.

0.0 |

Order Parameter

Time = 4000 Time = 10000

0.0

Order Parameter

(=3
ol
o
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FIG. 5. Order-parameter profiles for the evolution depicted in
Fig. 3. The cross section is the same as that for Fig. 4.

In[S(kt)<k>?]

the scaled structure factor for the CH equation obtained with

the same system sizes and statistics as described previously.

On the scale of this figure, the scaled structure factor for

model S is coincident with that for the CH equation except % - s s

. . . . . . -1.5 -0.5 0.5 15 25

for the first two points aftek=0, which exhibit violation of In(k/<k>)

scaling because of finite-size effects. A similar observation s

has also been made for the real-space correlation function by

Lacasteet al.[14]. However, we should stress that the struc- 23000

ture factor is a more sensitive characteristic of phase order- 6l 410000 |

ing dynamics than the correlation function. Furthermore, our \

present datdobtained on 512512 systems with 60 inde-

pendent runs andt=0.001Ax=0.5) constitutes a consid-

erable improvement over that of Lacasfal. [14], who

used a 128120 system with 10 independent runs and

At=0.025Ax=1.0. 2t
Before we proceed, two further remarks are in order.

First, it is interesting that the structure factors for model S

and the CH model are numerically indistinguishable, even 0

though the morphologies are different and domain growth is ki<l

characterized by different power laws. Clearly, the time-

dependent structure fact@which is the Fourier transform of

the equal-time correlation functidis not a sufficiently good FIG. 6. (8) Superposition of scaled structure factor data from a

measure of the morphology to discriminate between thesg@imulation of Egs(4) and(5) with T/T,=0.2, corresponding to the

two situations and perhaps one needs to invoke other toofurface-diffusion case. We pl&i(k,t)(k)* vs ki(k) for data from

like two-time correlation functions or higher-order structure dimensioniess times 2000, 3000, 4000, and 10000. The structure

factors[6]. Nevertheless, the structure factor is an experi-2ctor is computed on a 5¥%12 lattice as an average over 60

. . . independent initial conditions. It is normalized as described in the
mgntally relevant quantity and the computation of_ its anas -4 then spherically averaged. The first momerB(tt) is
Iytic form for the CH equation has been an outstanding prob-

lem to date. Furthermore, it has been believed that denoted agk) and measures the inverse of the characteristic length

“ " th for th ling f f th f cale. The solid line is a scaled plot of structure factor data from the
correct” theory for the scaling form o .t € _Structure actor CH equation at dimensionless time 10 000. Finally, the dashed line
must properly account for the bulk diffusion and the LS

. is an analytic form obtained from a naive application of Mazenko
growth law([8,21]. However, our numerical results demon- yeqry[21], which yields the domain growth lata(t) ~ Y. (b) Plot

strate that the scaling form of the structure factor for theys gata from(a) on a log-log scale. The Porod tail is extracted by
conserved case is considerably robust and is not affected t4rdening the order parameter field before computing the structure
the growth exponent or the underlying growth mechanism, afactor. (c) Porod plot[viz., k*S(k,t)/(k)? vs k/(k)] for the data
least for the model we have studied. from (a). This plot highlights the features of the Porod tail. Unfor-

The second remark we wish to make concerns the dasheadnately, our data in this plot exhibits large fluctuations for
line in Fig. a), which is obtained from a naive application k/(k)=2.5.

K'S(k ty/<ks
N
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of the theory of Mazenk¢21], who developed a Gaussian @
closure for the CH equation. The naive Mazenko theory pre- 10
dicts that the asymptotic growth law ligt) ~t¥* rather than
the numerically observed LS law, vit.(t)~t*3 Because of
the lower growth exponent, it is presumed that the naive 8f
Mazenko theory describes the surface-diffusion growth re-

gime of the CH equation. In light of our present results, itis =
clear that the form of the scaled structure factor is largely sr

independent of the mechanism of domain growth. Unfortu- I

nately, as is clear from Fig.(8), the analytic form obtained o

from the naive Mazenko theory is not correct in most re- 4 oo

spects and only gets right the approximate width of the scal- R 8%

ing function. We are presently investigating a Gaussian clo- , &

sure of Eq.(4) to see whether it gives better results for the 0

scaling function. !

Figure &b) plots the data of Fig. @ on a log-log scale 24
and reconfirms the coincidence of the CH and model S scal-
ing functions, including the Porod tei(k,t) ~k 2 for large
k. At small values ok, the scaled structure factor for model
S exhibits ak* behavior as in the CH cag@2], except for 19k
the first couple of values df, which are probably affected
by finite-size effects. Again, the dashed line is from the naive
Mazenko theory and has the wrong behavior for small values
of k, viz., S(k,t)~k? rather thanS(k,t)~k*. The analytic
form matches the numerical results in the Porod tail but this
may be entirely fortuitous. Figure(@ plots the data of Fig.

In[L(v]

© CH (x=0.33)
oT=0.8T, (x=0.33)

6(a) on a Porod plot, viz.k*S(k,t)/{(k)? vs k/(k), which oT-08T,
highlights features of the Porod tail. In this case, our data is < xT=02T (x=0.25)
not reliable fork/(k)=2.5. However, up to that point, the 09,'c 75 e o5
scaled form factors for the model S and CH cases are again In(t)

indistinguishable, including the first valley after the p¢8k
Similar results for the scaled structure factor are found for FIG. 7. (a) Characteristic domain siZe(t) plotted as a function
higher values of temperatufiealso. This is not surprising as of dimensionless time for our model in Eqél) and (5) with
the morphology for our model goes over to that for the CHT/T.=0.2, 0.4, 0.5, and 0.8. For comparison, we also present length
equation at higher values of the temperat{see Fig. 3. For  scale data from a simulation of the CH equation. The length scale is
the sake of brevity, we do not show structure factor data fopbtained as the inverse of the first moment of the structure factor
higher values off. (k). (b) Data from(a), plotted on a log-log scale. We use a fitting
Figure 7a) shows the time-dependent length sda(é) as routine to fit a linear function to the length scale data. The resultant
a function of dimensionless tintefor four different values of ~ fit (wherever reasonablés shown on the appropriate data set as a
temperature T/T.=0.2, 0.4, 0.5, and 0)8n our model. Re- solid line and the corresponding exponédenoted as) is speci-
call that surface diffusion effects are enhancedds low-  f1ed in the figure.

ered because,—1 asT—0. For purposes of comparison, ) ) )
we have also included the length scale data for the CH equd¥! ¢an simply be absorbed into the time scale. In the model

tion. Figure Tb) is a log-log plot of the data in Fig.(@. We  considered here, with mobilityl (¢), we would expect that,
use a fitting routine to fit a straight line to the data. Thefor any T>0, at sufficiently late times one could replace
resultant exponent&lenoted ax) for the CH equation and M(®) by M(¢), where ¢o(T) is the equilibrium value of
the case withT/T.=0.8 are identical, viz.x=0.33. On the ¢ in the bulk ordered phase. Then the crossover is between
other hand, foff/T,=0.2, we again get a straight line but the t/* at early times andM(¢,)t]** at late times, with the
associated growth exponent is 0.25, which is associated witffossover time* obtained from equating these two forms:
domain growth via surface diffusiofi3,14. For intermedi- t*~M(¢o)~*. This suggests the crossover scaling form
ate values off/T, (viz., 0.4 and 0.5 we do not get a good L(1)=t"f(t/t*), with f(0)=const and f(x)~x'*? for
linear fit as the length scale is in a transition regime betwee— -
L(t)~tY*andL(t)~t3

It is interesting to consider the crossover between these
two regimes (¥ andt*® growth) as a function of time and
temperaturel. At some fixed low temperature, one initially ~ Let us end this paper with a brief summary and discussion
hast¥ growth, which crosses over at late timesttG. We  of our results. We have presented detailed results from an
can estimate the crossover tiigT) as follows. In the stan- extensive numerical simulation of a model with order-
dard Cahn-Hilliard model, in which the mobilityl is treated parameter-dependent mobility. We expect this model to be in
as a constant, (t) depends orM asL(t)~(Mt)¥3 since the same dynamical universality class as other models with

IV. SUMMARY AND DISCUSSION
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order-parameter-dependent mobilit§1,14] but it has the exact nonlinear evolution equation for phase separation.
additional pleasant feature that it explicitly contains theTheir model is of the same form as Eq4) and (5) but
mean-field static solution. contains a nonlocal interaction term, instead of the gradient

Because of the large system sizes and extensive averagisquare term in Eq(5). They argue that this exact equation
employed by us, we are able to obtain the best numericajives results for interface motion which are similar to those
results on such systems to date. The salient features of oobtained from the CH equation. We are interested in exam-
results are as follows. In the parameter regime where surfadaing whether or not this exact equation is in the same dy-
diffusion drives domain growth, the morphology of evolving namical universality class as the CH equation.
patterns is more serpentine than that in the CH equation. Finally, we should point out that the difference in mor-
However, the scaling form of the time-dependent structurghologies between model S and the CH equation must show
factor for surface-diffusion-mediated growth appears to baip at some level, e.g., two-time correlation functions or
numerically identical to that for the CH equation, including higher-order structure factof$]. This is another question
the Porod tail and the smatlbehavior. This numerical result we are presently interested in. Nevertheless, this possible dif-
casts doubts on the conventional wisdom that a “correct”ference in two-time correlation functions or higher-order
theory for the scaling form of the CH structure factor muststructure factors does not detract from the relevance of the
contain the correct growth law and properly model the bulkfact that the scaled form of the conventional structure factor
diffusion field. As a matter of fact, we are led to speculateis very robust. After all, the conventional structure factor is
that the scaling form for the conserved case may be dictatetthe primary quantity of experimental, numerical and theoret-
by more general considerations, e.g., domain-size distribu€al interest.
tions, etc. This is an approach we are presently pursuing in
an attempt to obtain a better understanding of the functional
form of the structure factor for the conserved case.

We are also interested in examining other models of S.P. is grateful to Alan Bray for inviting him to Manches-
phase separation to see whether they give rise to similar reer, where most of the numerical calculations described in
sults for the scaled structure factor. In particular, Giacomirthe text were completed. He is also grateful to the Newton
and LebowitZ 23] have recently studied an Ising model on aInstitute, Cambridge, for its generous hospitality during a
cubic lattice with Kawasaki spin-exchange kinetics whichperiod over which this work was completed. Finally, he
satisfies detailed balance. The spins interact via a longwould like to thank A.-H. Machado, C. Yeung, and R. K. P.
ranged Kac interaction potential of the form Zia for useful discussions and A.-H. Machado for sending
V(rij) = de(yrij), wherer;; is the distance between spins him copies of relevant papers. J.L.L. and S.P. thank G. Gia-
i andj,y is a parameter, and is the dimensionality. In the comin for useful discussions. J.L.L. was supported by NSF
limit y—0, Giacomin and Lebowitz rigorously obtain an Grant No. NSF-DMR 92-134244-20946.
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