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Phase-separation kinetics in a model with order-parameter-dependent mobility
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We present extensive results from two-dimensional simulations of phase-separation kinetics in a model with
order-parameter dependent mobility. We find that the time-dependent structure factor exhibits dynamical
scaling and the scaling function is numerically indistinguishable from that for the Cahn-Hilliard~CH! equation,
even in the limit where surface diffusion is the mechanism for domain growth. This supports the view that the
scaling form of the structure factor is ‘‘universal’’ and leads us to question the conventional wisdom that an
accurate representation of the scaled structure factor for the CH equation can only be obtained from a theory
which correctly models bulk diffusion.@S1063-651X~97!09107-1#

PACS number~s!: 64.70.2p
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I. INTRODUCTION

When a two-phase mixture in a homogeneous phas
quenched below the critical coexistence temperature, it
comes thermodynamically unstable and evolves toward
new equilibrium state, consisting of regions which are rich
one or the other constituent of the mixture. The dynamics
this evolution is referred to as ‘‘phase-ordering dynamic
and constitutes a well-studied problem in nonequilibrium s
tistical mechanics@1#. As a result of these investigation
there is now a good understanding of many aspects of p
ordering in pure and isotropic binary mixtures. Thus, it
generally accepted that the coarsening domains are ch
terized by a unique, time-dependent length scaleL(t), where
t is time. Furthermore, the nature of the phase ordering p
cess depends critically on whether or not the order param
is conserved. For systems characterized by a nonconse
order parameter, e.g., ordering of a ferromagnet, grow
domains obey the Lifshitz-Cahn-Allen~LCA! growth law
L(t);t1/2 @1#. For systems with a conserved order parame
but no hydrodynamic effects, e.g., segregation of a bin
alloy, the characteristic domain size obeys the Lifshi
Slyozov ~LS! growth lawL(t);t1/3 @1#. For systems with a
conserved order parameter and hydrodynamic effects,
segregation of a binary liquid, there appear to be vari
regimes of domain growth, depending on the dimensiona
and system parameters@2,3#.

As far as the analytic situation is concerned, there i
reasonable understanding of the nonconserved case for
and isotropic systems. In particular, the LCA diffusiv
growth law has been derived in some exact models@4#. In
addition, Ohtaet al.and Oono and Puri@5# have proposed an
analytic form for the time-dependent structure factor wh
is in good agreement with numerical results, though the q
ity of this agreement has recently been questioned by B
dell et al. @6#. For the conserved case, the situation is l
satisfactory. There is some understanding of the growth
ponents and one has a good empirical form for the sca
structure factor, at least without hydrodynamics@7#. How-
ever, this functional form is analytically derivable only in th
561063-651X/97/56~1!/758~8!/$10.00
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limiting case where one of the components is present i
small fraction@1#. An outstanding theoretical problem in th
field is the calculation of the scaled structure factor for t
conserved case when the two components of the mixture
present in an equal proportion, viz., the so-called criti
quench@8#. Our results in this paper provide some interesti
insights on this problem, as we will discuss later.

In this paper, we study a model for phase-separation
namics in systems where the mobility is order-parameter
pendent. We will present detailed numerical results from
simulation of this model. This paper is organized as follow
In Sec. II, we briefly discuss our model and its static so
tion. In Sec. III, we present numerical results obtained fro
our model. Section IV ends this paper with a summary a
discussion.

II. MODEL FOR PHASE-SEPARATING SYSTEMS
WITH ORDER-PARAMETER-DEPENDENT MOBILITY

The dynamics of phase separation is usually described
the phenomenological equation

]f~rW,t !

]t
5¹W •FM ~f!¹W S dH@f~rW,t !#

df~rW,t !
D G , ~1!

wheref(rW,t) is the order parameter at pointrW and timet and
is a measure of the local difference in densities of the t
segregating species, sayA andB. In Eq. ~1!, M (f) corre-
sponds to the mobility, which is dependent on the order
rameter, in general. The free-energy functional is usua
chosen to be of the standardf4 form, viz.,

H@f~rW,t !#5E drWF2
1

2
f~rW,t !21

1

4
f~rW,t !4

1
1

2
@¹W f~rW,t !#2G , ~2!

where we assume that all variables have been rescaled
dimensionless units, and the system is below the critical te
758 © 1997 The American Physical Society
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56 759PHASE-SEPARATION KINETICS IN A MODEL WITH . . .
perature. The dynamics of Eqs.~1! and ~2! drives the order
parameter to the local fixed point valuesf0561, corre-
sponding to~say! A- and B-rich phases, respectively. Th
temporal evolution described by Eq.~1! also satisfies the
conservation constraint that*drWf(rW,t) be constant in time.

There have been many studies of Eq.~1! in the limiting
case of the Cahn-Hilliard~CH! equation@9#, where the mo-
bility is constant, viz.,M (f)51 ~in dimensionless units!.
Numerical studies of the CH equation and equivalent c
dynamical system~CDS! models@10# demonstrate that late
stage domain growth obeys the LS growth law we ha
quoted earlier@i.e.,L(t);t1/3#. These studies also clarify th
functional form of the scaled structure factor which char
terizes the morphology of the coarsening domains.

For deep quenches, it has been pointed out by Lan
et al. and Kitahara and Imada@11# that a more realistic
model for phase separation should explicitly incorporate
order-parameter-dependent mobility of the form

M ~f!512af2, ~3!

wherea parametrizes the depth of the quench. At the phy
cal level, this form of the mobility can be understood
follows. Deep quenches result in enhanced segregatio
thatA-rich ~or B-rich! domains are purer inA ~or B) than in
the case of shallow quenches. Thus, if one presumes
phase separation occurs by exchanges of neighboringA and
B atoms, the probability of such an exchange in the bulk
drastically reduced for deep quenches. This can be mimic
by the order-parameter-dependent mobility in Eq.~3! with
a→1. At the mathematical level, Kitahara and Imada@11#
have shown that an order-parameter-dependent mob
arises naturally if one attempts to obtain a coarse-grai
model for phase separation from a master equation des
tion of an appropriate microscopic model, viz., the Isi
model with Kawasaki spin-exchange kinetics@12#.

The physical effect of the order-parameter-dependent
bility is that, as a→1 ~which happens for temperatur
T→0), bulk diffusion is substantially suppressed because
mobility M (f0)→0. Therefore, the effects of surface diffu
sion are relatively enhanced. The surface-diffusion mec
nism for domain growth has an associated growth l
L(t);t1/4 @13#, in contrast to the evaporation-condensati
mechanism which drives asymptotic growth in the CH eq
tion and gives rise to the LS growth law. Therefore,
T→0, one expects an extended regime oft1/4 growth in the
dynamics of Eqs.~1!–~3!. This model has been studied n
merically by various authors@14# and we will remark on
their results shortly. Furthermore, Bray and Emmott@15#
have analytically studied phase-separation in models w
order-parameter-dependent mobility in the limit where o
of the components is present in a vanishingly small fracti
In passing, we should also point out that an order-parame
dependent mobility as in Eq.~3! has proved to be a usefu
way of incorporating the effects of external fields which va
linearly with distance, e.g., gravity. However, we will not g
into this here and merely refer the interested reader to R
@16#.

In recent work, there was proposed a novel dynam
equation for phase separation in binary mixtures—using
master equation formulation for an Ising model with K
ll
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wasaki spin-exchange kinetics@17#. This equation was first
obtained in the context of phase separation in a gravitatio
field but does not reduce to the CH equation in the abse
of gravity. As a matter of fact, it takes a form similar to th
of Eq. ~1!, i.e.,

]f~rW,t !

]t
5¹W •F @12f~rW,t !2#¹W S dH@f~rW,t !#

df~rW,t !
D G , ~4!

with the free energy

H@f~rW,t !#5
T

Tc2TE drW
1

2F @11f~rW,t !# ln@11f~rW,t !#

1@12f~rW,t !# ln@12f~rW,t !#2
Tc
T

f~rW,t !2

1
Tc2T

T
@¹W f~rW,t !#2G . ~5!

Equations~4! and~5! have been cast in a dimensionless fo
by a rescaling of the space and time variables analogou
that for the CH equation@17#. ~Clearly, this rescaling is no
appropriate in the vicinity of the critical temperatureTc .) It
is difficult to put Eqs.~4! and ~5! in a parameter-free form
because of the additional term in comparison to the
equation and the nature of the static solution, which we d
cuss below. The first two terms under the integral sign in
~5! are recognized as the entropy of a noninteracting bin
mixture and the next two terms correspond to the interac
part @18#.

Equations~4! and ~5! have the pleasant feature that th
explicitly contain the mean-field static solutionfs(rW), which
is the solution of

fs~rW !5tanhFTcT fs~rW !1S TcT 21D¹2fs~rW !G , ~6!

where it should be kept in mind that the space variable
been rescaled. However, we do not expect our model to b
a different dynamical universality class from Eqs.~1!–~3!. In
our model, asT→0, the saturation value of the order param
eterf0→61. This reduces the bulk diffusion because of t
order-parameter-dependent mobility and enhances the
regime in which one observes surface-diffusion-media
growth. In the case where surface diffusion is predomina
we follow the terminology established by Hohenberg a
Halperin@19# and refer to our model as ‘‘model S,’’ where
refers to surface diffusion. In the classification of Hohenbe
and Halperin, the CH equation is referred to as model B.
shallow quenches, the saturation value of the order param
f0 is considerably less than 1 and the mobili
M (f)(512f2) is not significantly reduced in the bulk. In
this limit, the dynamics of our model is in the same dynam
cal universality class as model B or the CH equation.

In this paper, we present detailed numerical results from
simulation of Eqs.~4! and ~5!. The purpose of this paper i
twofold. First, our numerical results improve substantia
upon existent results@14# for models with order-parameter
dependent mobility. Second, we believe that our results m
be of some relevance to an outstanding theoretical prob
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760 56SANJAY PURI, ALAN J. BRAY, AND JOEL L. LEBOWITZ
of phase-separation dynamics, viz., the computation of t
scaling form of the time-dependent structure factor.

Before we present numerical results, we would like t
briefly discuss the interfacial profile in our model. For this
we need the solution of the one-dimensional version of E
~6!, viz.,

d2fs~x!

dx2
52

Tc
Tc2T

fs~x!1
T

Tc2T
tanh21@fs~x!#. ~7!

Multiplying both sides by 2@dfs(x)/dx#, we can trivially
integrate this equation to get

dfs~x!

dx
5F 2T

Tc2T
fs~x!tanh21@fs~x!#

1
T

Tc2T
lnS 12fs~x!2

12f0
2 D

2
Tc

Tc2T
@fs~x!21f0

2#G1/2, ~8!

where we focus on the profile which goes from2f0 at
x52` to f0 at x5`. A second integration is only possible
numerically and we show the resultant profiles forx.0 in
Fig. 1~a! for four different values ofT/Tc . This solution has
the formfs(x)5f0f (x/j), wheref (y) is a sigmoidal func-
tion andj measures the correlation length or interface thick
ness in dimensionless units. An estimate ofj is obtained as
the distance over whichf (x/j) rises from 0 to~say! 1/A2 of
its maximum value. The profiles as a function of the scale
distancex/j are shown in Fig. 1~b!. They do not exhibit a
universal collapse because of a weak dependence off (y) on
the parameterT/Tc . In any case, our interest in the correla
tion length is primarily from a numerical standpoint in tha
the discretization mesh size in space should not exceed
interface thickness, which is approximately 2j.

III. NUMERICAL RESULTS

We have conducted extensive two-dimensional numeric
simulations of Eqs.~4! and ~5! for the parameter values

FIG. 1. ~a! Static wall solutions of the model described in the
text @Eqs. ~4! and ~5!#. The solutions are obtained by numerically
solving Eq.~8!. We plot the profilefs(x)/f0 vs x for x.0 ~where
f0 is the saturation value! for four values of the temperatureT, viz.,
T/Tc50.2, 0.4, 0.5, and 0.8.~b! Same as~a! except the distancex is
scaled by a correlation lengthj, which is defined as the distance
over which the wall profile rises to 1/A2 of its maximum value.
e
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T/Tc50.2, 0.4, 0.5, and 0.8, corresponding tof0.0.9999,
0.9857, 0.9575, and 0.7105, respectively. We implemen
simple Euler discretization of Eqs.~4! and~5! on a lattice of
sizeN3N. The Laplacian and divergence operators in E
~4! and ~5! are replaced by their isotropically discretize
equivalents, involving both nearest- and next-nearest ne
bors. The discrete implementation of our model with ord
parameter-dependent mobility has the unpleasant feature
it is unstable forf.1 and numerical fluctuations whic
causef to become larger than 1 give rise to unphysic
divergences.~This property is common to all such mode
@14#.! For T/Tc50.2(f0.0.9999), this causes a numeric
problem because of the proximity of the saturation value
61. We circumvent this problem by using a very fine me
size (Dt50.001 andDx50.5) and by setting the value o
f equal tof0 ~or 2f0) whenever it exceedsf0 ~or be-
comes less than2f0). We have confirmed that this proce
dure does not cause any appreciable violation of ord
parameter conservation for the extremely fine mesh we h
used. For the higher values ofT studied here, we use th
coarser mesh sizesDt50.01 andDx51.0 and this suffices
for our purposes.

Periodic boundary conditions are applied in both dire
tions of our lattice. For all simulations described here,
initial condition for the order parameter consists of a u
formly distributed random fluctuation of amplitude 0.02
about a zero background. This mimics a critical quench fr
high temperatures, at which the system is homogeneous
has small thermal fluctuations.

Apart from evolution pictures and profiles, the statistic
quantity of experimental interest is the time-dependent str
ture factor

S~kW ,t !5^f~kW ,t !f~kW ,t !* &, ~9!

which is the Fourier transform at wave vectorkW of the order
parameter correlation function. In Eq.~9!, f(kW ,t) is the Fou-
rier transform off(rW,t) and the angular brackets refer to a
averaging over an ensemble of initial conditions. In our d
crete simulations, the wave vectorkW takes the discrete value
(2p/NDx)(nx ,ny), wherenx and ny range from2N/2 to
(N/2)21. We present here structure factor data obtained
5123512 systems as an average over 60 independent in
conditions. The order parameter profiles are hardened be
computing the structure factor; viz., the values off.0 are
set equal to 1 andf,0 are set equal to21. The structure
factor is normalized as(kWS(kW ,t)/N

251. All results pre-
sented below are for the spherically averaged structure fa
S(k,t).

Experimentalists are typically interested in whether or n
the structure factor exhibits dynamical scaling@20#, viz.,
whether or not the time dependence of the spherically a
aged structure factor has the simple scaling form

S~k,t !5L~ t !dF„kL~ t !…, ~10!

where d is the dimensionality andF(x) is a time-
independent master function. The interpretation of dynam
scaling is that the coarsening pattern maintains its morp
ogy but the characteristic length scaleL(t) increases with
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56 761PHASE-SEPARATION KINETICS IN A MODEL WITH . . .
time. There are many equivalent definitions~up to prefac-
tors! of the characteristic length scale. We use what is p
haps the most commonly used definition, viz., the inverse
the first moment of the spherically averaged structure fa
S(k,t). Thus, we haveL(t)5^k&21, where

^k&5
*0
kmdkkS~k,t !

*0
kmdkS~k,t !

. ~11!

In Eq. ~11!, we take the upper cutoffkm as half the magni-
tude of the largest wave vector in the Brillouin zone.
these large values of the wave vector, the structure factor
decayed to approximately zero and the value of^k& is un-
changed even if we increase the cutoff. Of course, one co
also define a length scale using higher moments of the st
ture factor or zeros of the correlation function. However,
the dynamical scaling regime@20#, these definitions are al
equivalent.

Figure 2 shows evolution pictures from a disordered i
tial condition for the parameter valueT/Tc50.2 ~or
f0.0.9999) and a lattice size 2563256. This low value of
temperature corresponds to a situation in which there is
most no bulk diffusion once the order parameter saturates
to its equilibrium values. In this case, domain growth occ
via surface diffusion and has an associated growth
L(t);t1/4 @13#. Notice that the domain morphology in th
case is considerably different from the morphology in t
usual CH case with the bicontinuous domains being m
serpentine and intertwined in the present case. Figur

FIG. 2. Evolution pictures from a disordered initial condition f
an Euler-discretized version of Eqs.~4! and ~5! on a 2563256
lattice. Regions with positive order parameter are marked in bl
and those with negative order parameter are not marked. The
rameter value isT/Tc50.2, corresponding to a situation in whic
surface diffusion is the primary mechanism of domain growth. T
discretization mesh sizes areDt50.001 andDx50.5. Periodic
boundary conditions are applied in both directions. The initial c
dition consists of uniformly distributed random fluctuations of a
plitude 0.025 about a zero background, corresponding to a cri
quench. The evolution pictures are shown for dimensionless ti
1000, 2000, 4000, and 10 000.
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shows the corresponding evolution pictures from
2563256 lattice forT/Tc50.5 ~or f0.0.9575). These pic-
tures are more reminiscent of the CH morphology. Figure
shows the variation of order parameter along a horizon
cross section at the middle of the lattice for the evolutio
pictures of Fig. 2. Figure 5 shows the order-parameter p
files corresponding to the evolution depicted in Fig. 3. The
profiles provide a qualitative measure of the thinning out
defects~viz., interfaces! as the coarsening proceeds.

In Fig. 6~a!, we superpose data from different times fo
the scaled structure factorS(k,t)^k&2 vs k/^k&. The param-
eter value isT/Tc50.2, corresponding to growth mediated
by surface diffusion~i.e., model S!. The structure factor data
collapses neatly onto a master curve, exhibiting the valid
of dynamical scaling in this system. The solid line refers

k
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FIG. 3. Similar to Fig. 2 but for the parameter value
T/Tc50.5.

FIG. 4. Order-parameter profiles for the evolution depicted
Fig. 2. The profiles are measured along a horizontal cross sectio
the center of the vertical axis.
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762 56SANJAY PURI, ALAN J. BRAY, AND JOEL L. LEBOWITZ
the scaled structure factor for the CH equation obtained w
the same system sizes and statistics as described previou
On the scale of this figure, the scaled structure factor f
model S is coincident with that for the CH equation exce
for the first two points afterk50, which exhibit violation of
scaling because of finite-size effects. A similar observati
has also been made for the real-space correlation function
Lacastaet al. @14#. However, we should stress that the struc
ture factor is a more sensitive characteristic of phase ord
ing dynamics than the correlation function. Furthermore, o
present data~obtained on 5123512 systems with 60 inde-
pendent runs andDt50.001,Dx50.5) constitutes a consid-
erable improvement over that of Lacastaet al. @14#, who
used a 1203120 system with 10 independent runs an
Dt50.025,Dx51.0.

Before we proceed, two further remarks are in orde
First, it is interesting that the structure factors for model
and the CH model are numerically indistinguishable, ev
though the morphologies are different and domain growth
characterized by different power laws. Clearly, the tim
dependent structure factor~which is the Fourier transform of
the equal-time correlation function! is not a sufficiently good
measure of the morphology to discriminate between the
two situations and perhaps one needs to invoke other to
like two-time correlation functions or higher-order structur
factors @6#. Nevertheless, the structure factor is an expe
mentally relevant quantity and the computation of its an
lytic form for the CH equation has been an outstanding pro
lem to date. Furthermore, it has been believed that
‘‘correct’’ theory for the scaling form of the structure facto
must properly account for the bulk diffusion and the L
growth law @8,21#. However, our numerical results demon
strate that the scaling form of the structure factor for th
conserved case is considerably robust and is not affected
the growth exponent or the underlying growth mechanism,
least for the model we have studied.

The second remark we wish to make concerns the das
line in Fig. 6~a!, which is obtained from a naive application

FIG. 5. Order-parameter profiles for the evolution depicted
Fig. 3. The cross section is the same as that for Fig. 4.
th
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FIG. 6. ~a! Superposition of scaled structure factor data from
simulation of Eqs.~4! and~5! with T/Tc50.2, corresponding to the
surface-diffusion case. We plotS(k,t)^k&2 vs k/^k& for data from
dimensionless times 2000, 3000, 4000, and 10 000. The struc
factor is computed on a 5123512 lattice as an average over 6
independent initial conditions. It is normalized as described in
text and then spherically averaged. The first moment ofS(k,t) is
denoted aŝk& and measures the inverse of the characteristic len
scale. The solid line is a scaled plot of structure factor data from
CH equation at dimensionless time 10000. Finally, the dashed
is an analytic form obtained from a naive application of Mazen
theory@21#, which yields the domain growth lawL(t);t1/4. ~b! Plot
of data from~a! on a log-log scale. The Porod tail is extracted
hardening the order parameter field before computing the struc
factor. ~c! Porod plot @viz., k4S(k,t)/^k&2 vs k/^k&# for the data
from ~a!. This plot highlights the features of the Porod tail. Unfo
tunately, our data in this plot exhibits large fluctuations f
k/^k&>2.5.
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of the theory of Mazenko@21#, who developed a Gaussia
closure for the CH equation. The naive Mazenko theory p
dicts that the asymptotic growth law isL(t);t1/4 rather than
the numerically observed LS law, viz.,L(t);t1/3. Because of
the lower growth exponent, it is presumed that the na
Mazenko theory describes the surface-diffusion growth
gime of the CH equation. In light of our present results, it
clear that the form of the scaled structure factor is larg
independent of the mechanism of domain growth. Unfor
nately, as is clear from Fig. 6~a!, the analytic form obtained
from the naive Mazenko theory is not correct in most
spects and only gets right the approximate width of the s
ing function. We are presently investigating a Gaussian c
sure of Eq.~4! to see whether it gives better results for t
scaling function.

Figure 6~b! plots the data of Fig. 6~a! on a log-log scale
and reconfirms the coincidence of the CH and model S s
ing functions, including the Porod tailS(k,t);k23 for large
k. At small values ofk, the scaled structure factor for mod
S exhibits ak4 behavior as in the CH case@22#, except for
the first couple of values ofk, which are probably affected
by finite-size effects. Again, the dashed line is from the na
Mazenko theory and has the wrong behavior for small val
of k, viz., S(k,t);k2 rather thanS(k,t);k4. The analytic
form matches the numerical results in the Porod tail but
may be entirely fortuitous. Figure 6~c! plots the data of Fig.
6~a! on a Porod plot, viz.,k4S(k,t)/^k&2 vs k/^k&, which
highlights features of the Porod tail. In this case, our dat
not reliable fork/^k&>2.5. However, up to that point, th
scaled form factors for the model S and CH cases are a
indistinguishable, including the first valley after the peak@8#.

Similar results for the scaled structure factor are found
higher values of temperatureT also. This is not surprising a
the morphology for our model goes over to that for the C
equation at higher values of the temperature~see Fig. 3!. For
the sake of brevity, we do not show structure factor data
higher values ofT.

Figure 7~a! shows the time-dependent length scaleL(t) as
a function of dimensionless timet for four different values of
temperature (T/Tc50.2, 0.4, 0.5, and 0.8! in our model. Re-
call that surface diffusion effects are enhanced asT is low-
ered becausef0→1 asT→0. For purposes of comparison
we have also included the length scale data for the CH eq
tion. Figure 7~b! is a log-log plot of the data in Fig. 7~a!. We
use a fitting routine to fit a straight line to the data. T
resultant exponents~denoted asx) for the CH equation and
the case withT/Tc50.8 are identical, viz.,x50.33. On the
other hand, forT/Tc50.2, we again get a straight line but th
associated growth exponent is 0.25, which is associated
domain growth via surface diffusion@13,14#. For intermedi-
ate values ofT/Tc ~viz., 0.4 and 0.5!, we do not get a good
linear fit as the length scale is in a transition regime betw
L(t);t1/4 andL(t);t1/3.

It is interesting to consider the crossover between th
two regimes (t1/4 andt1/3 growth! as a function of timet and
temperatureT. At some fixed low temperature, one initiall
hast1/4 growth, which crosses over at late times tot1/3. We
can estimate the crossover timet* (T) as follows. In the stan-
dard Cahn-Hilliard model, in which the mobilityM is treated
as a constant,L(t) depends onM as L(t);(Mt)1/3, since
-
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is
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M can simply be absorbed into the time scale. In the mo
considered here, with mobilityM (f), we would expect that,
for any T.0, at sufficiently late times one could replac
M (f) by M (f0), wheref0(T) is the equilibrium value of
f in the bulk ordered phase. Then the crossover is betw
t1/4 at early times and@M (f0)t#

1/3 at late times, with the
crossover timet* obtained from equating these two form
t*;M (f0)

24. This suggests the crossover scaling fo
L(t)5t1/4f (t/t* ), with f (0)5const and f (x);x1/12 for
x→`.

IV. SUMMARY AND DISCUSSION

Let us end this paper with a brief summary and discuss
of our results. We have presented detailed results from
extensive numerical simulation of a model with orde
parameter-dependent mobility. We expect this model to b
the same dynamical universality class as other models w

FIG. 7. ~a! Characteristic domain sizeL(t) plotted as a function
of dimensionless time for our model in Eqs.~4! and ~5! with
T/Tc50.2, 0.4, 0.5, and 0.8. For comparison, we also present len
scale data from a simulation of the CH equation. The length sca
obtained as the inverse of the first moment of the structure fa
^k&. ~b! Data from~a!, plotted on a log-log scale. We use a fittin
routine to fit a linear function to the length scale data. The resul
fit ~wherever reasonable! is shown on the appropriate data set as
solid line and the corresponding exponent~denoted asx) is speci-
fied in the figure.
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order-parameter-dependent mobility@11,14# but it has the
additional pleasant feature that it explicitly contains t
mean-field static solution.

Because of the large system sizes and extensive avera
employed by us, we are able to obtain the best numer
results on such systems to date. The salient features of
results are as follows. In the parameter regime where sur
diffusion drives domain growth, the morphology of evolvin
patterns is more serpentine than that in the CH equat
However, the scaling form of the time-dependent struct
factor for surface-diffusion-mediated growth appears to
numerically identical to that for the CH equation, includin
the Porod tail and the small-k behavior. This numerical resu
casts doubts on the conventional wisdom that a ‘‘corre
theory for the scaling form of the CH structure factor mu
contain the correct growth law and properly model the b
diffusion field. As a matter of fact, we are led to specula
that the scaling form for the conserved case may be dict
by more general considerations, e.g., domain-size distr
tions, etc. This is an approach we are presently pursuin
an attempt to obtain a better understanding of the functio
form of the structure factor for the conserved case.

We are also interested in examining other models
phase separation to see whether they give rise to simila
sults for the scaled structure factor. In particular, Giacom
and Lebowitz@23# have recently studied an Ising model on
cubic lattice with Kawasaki spin-exchange kinetics whi
satisfies detailed balance. The spins interact via a lo
ranged Kac interaction potential of the for
V(r i j )5gdJ(gr i j ), wherer i j is the distance between spin
i and j ,g is a parameter, andd is the dimensionality. In the
limit g→0, Giacomin and Lebowitz rigorously obtain a
hn
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n

g-

exact nonlinear evolution equation for phase separat
Their model is of the same form as Eqs.~4! and ~5! but
contains a nonlocal interaction term, instead of the grad
square term in Eq.~5!. They argue that this exact equatio
gives results for interface motion which are similar to tho
obtained from the CH equation. We are interested in exa
ining whether or not this exact equation is in the same
namical universality class as the CH equation.

Finally, we should point out that the difference in mo
phologies between model S and the CH equation must s
up at some level, e.g., two-time correlation functions
higher-order structure factors@6#. This is another question
we are presently interested in. Nevertheless, this possible
ference in two-time correlation functions or higher-ord
structure factors does not detract from the relevance of
fact that the scaled form of the conventional structure fac
is very robust. After all, the conventional structure factor
the primary quantity of experimental, numerical and theor
ical interest.
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